Chapter II
Air Force Research Laboratory
Autonomy Science & Technology Strategy

Dr Jim Overholt
AFRL Senior Scientist for Autonomous Systems

Kris Kearns
AFRL Portfolio Lead for Autonomy Research
Human Effectiveness Directorate
Air Force Research Laboratory

With the support from many AFRL Scientists and Researchers

Can be contacted through:
AF-autonomy@defenseinnovationmarketplace.mil

Integrity ★ Service ★ Excellence
AFRL Autonomy
Vision & Goals

Ensure operations in complex, contested environment

Demonstrate highly effective human-machine teaming

Intelligent machines seamlessly integrated with humans - maximizing mission performance in complex and contested environments

Create actively coordinated teams of multiple machines

Ensure safe and effective systems in unanticipated & dynamic environments
Ensure operations in complex, contested environment

Demonstrate highly effective human-machine teaming

Intelligent machines seamlessly integrated with humans - maximizing mission performance in complex and contested environments

Create actively coordinated teams of multiple machines

Ensure safe and effective systems in unanticipated & dynamic environments
Intelligent machines seamlessly integrated with humans - maximizing mission performance in complex and contested environments.

Ensure safe and effective systems in unanticipated & dynamic environments.

AFRL Autonomy

Human-Machine Teaming

ENDURING PROBLEMS

- Enable & Calibrate trust between human and machines
- Develop common understanding and shared perception between humans and machines
- Create an environment for flexible and effective decision making

Ensure operations in complex, contested environment

Demonstrate highly effective human-machine teaming

Ensure safe and effective systems in unanticipated & dynamic environments.
HUMAN MACHINE TEAMING

ADVANCEMENT OF AUTONOMOUS SYSTEM THROUGH HUMAN-MACHINE TEAMING

VISION

2030 SEAMLESS HUMAN-MACHINE PARTNERSHIPS

TODAY

Machines as Tools
- Non-intuitive interfaces
- One-way information flow
- Uncertainty and limited trust

TECHNOLOGY CHALLENGES

HUMAN STATE SENSING & ASSESSMENT
- Objectively measure and assess human's state (physiological, performance, behavioral)

HUMAN-MACHINE INTERACTION
- Enable human and machines to communicate and share information

TASK & COGNITIVE MODELING
- Task and function allocation for workload and decision-making balance

HUMAN & MACHINE LEARNING
- Adaptive, learning, and extended mutual training between human and machine

DATA FUSION & UNDERSTANDING
- Integrate human and machine data (context, time, format) for a shared world model

FUTURE

Intelligent Machines as Team-Mates
- Natural user interfaces
- Mutual awareness of team-mate condition
- Shared situational understanding

MAXIMIZING PERFORMANCE IN COMPLEX AND CONTESTED ENVIRONMENTS

©2015 Wright-Brothers Institute/IDEA Lab. Created by The Grove Consultants International.
Human-Machine Teaming Technology Challenges

Human State Sensing & Assessment
• Objectively measure and assess human’s state (physiological, performance, behavioral)

Human-Machine Interaction
• Enable human and machines to communicate and share information

Task & Cognitive Modeling
• Task and function allocation for workload and decision-making balance

Human & Machine Learning
• Adaptive, learning and extended mutual training between H & M

Data Fusion & Understanding
• Integrate human and machine data (context, time, format) for a shared world model

Inter-relationship