DOD Awards \$149 Million in Research Funding

The Department of Defense (DOD) today announced it will issue 22 awards totaling \$149 million over the next five year to academic institutions to perform multidisciplinary basic research. The Multidisciplinary University Research Initiative (MURI) program supports research by teams of investigators that intersect more than one traditional science and engineering discipline in order to accelerate research progress. Most of the program's efforts involve researchers from multiple academic institutions and academic departments. Based on the proposals selected in the fiscal year 2015 competition, a total of 55 academic institutions are expected to participate in these 22 research efforts.

The highly competitive MURI program complements other DOD basic research efforts that support traditional, single-investigator university research grants by supporting multidisciplinary teams with larger and longer awards, in carefully chosen research topics identified for their potential for significant and sustained progress. Like single investigator awards, MURI awards provide strong support for the education and training of graduate students in new, cutting edge research. In addition to university research, DOD also supports basic research at its laboratories and in industry.

Over the past 29 years, the DOD's MURI program has resulted in significant capabilities for our military forces and opened up entirely new lines of research. Examples include advances in laser frequency combs that have become the gold standard in frequency control for precision in navigation and targeting; atomic and molecular selfassembly projects that have opened new possibilities for nano-manufacturing; the field of spintronics emerged from a MURI award on magnetic materials and devices research. Recently the strategy to quickly leverage the basic research advances in MURI awards for new capabilities has focused on early engagement with industry through the annual Office of the Secretary of Defense MURI program reviews.

The Army Research Office, the Air Force Office of Scientific Research, and the Office of Naval Research solicited proposals in 19 topics important to DOD and the military services and received a total of 289 white papers, which were followed by 76 proposals. The awards were selected based on merit review by a panel of experts and are subject to successful negotiation between the institution and DOD. The awards announced today are for a five year period subject to availability of appropriations and satisfactory research progress.

This year for the first time, topical areas were identified for joint US / UK academic collaborative proposals, with the UK collaborators funded by the UK government. The competitive process resulted in two joint US-UK teams selected for awards.

The list of projects selected for fiscal year 2015 funding may be found below.

ARO	Evolutionary Mechanics of	Duke University Sheila Patek	NC
	Impulsive Biological Systems:	Stanford University	CA
	Guiding Scalable Synthetic	Harvard University	MA
	Design	University of California-Irvine	CA
		University of Maryland, College Park	MD
		University of Massachusetts, Amherst	MA
MURI Topi	ic 2: Exploiting nitrogen vacancy diam	onds for manipulation of biological transduction	
ARO	Imaging and Control of	Harvard University Ronald Walswo	th MA
	Biological Transduction using	Massachusetts Institute of Technology	MA
	NV – Diamond		
MURI Topi	ic 3: Noncommutativity in Interdepen	dent Multimodal Data Analysis	1
ARO	Adaptive Exploitation of	University of Illinois, Urbana-Champaign Negar Kiyavash	IL
	Noncommutative Multimodal	University of California, San Diego	CA
	Information Structure	University of Michigan	MI
		University of Wisconsin, Madison	WI
		Stanford University	CA
		Harvard University	MA
		Princeton University	NJ
MURI Topi	ic 4: Multi – Scale Response for Adapt	ive Chemical and Material Systems	
ARO	Specifically Triggerable Multi –	University of Massachusetts – Amherst Sankaran	MA
	Scale Responses in Organized	University of Wisconsin, Madison Thayumanavan	WI
	Assemblies	University of Chicago	IL
		University of California, San Diego	CA
MURI Topi	ic 5: New Regimes in Quantum Optics		
ARO	Engineering Exotic States of	Princeton University Andrew Houck	NJ
	Light with Superconducting	University of Chicago	IL
	Circuits	University of Maryland, College Park	MD
		University of Pittsburgh	PA

MURI Topi	c 6: Fractional Order Methods for Sha	rp Interface Flows		
ARO	Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications	Brown University Columbia University Michigan State University Rice University University of South Carolina	George Karniadakis	RI NY MI TX SC
MURI Topio	c 7: 2 – Dimensional Organic Polymers	5		
ARO	Center for Advanced 2D Networks	Cornell University University of California , Berkeley Georgia Institute of Technology	William Dichtel	NY CA GA
MURI Topio	c 8: Network Science of Teams			
ARO	Quantitative Network – based Models of Adaptive Team Behavior	University of California, Santa Barbara University of Illinois, Urbana Champaign University of Southern California Massachusetts Institute of Technology Northwestern University	Ambuj Singh	CA IL CA MA IL
MURI Topic	c 9: Exploiting Biological Electromech	anics: Using Electromagnetics Energy to Control Biological	Systems	
AFSOR	Nanoelectropulse-induced electromechanical signaling and control of biological systems	The Old Dominion University Massachusetts Institute of Technology Texas A&M University of Nevada School of Medicine	Andrei Pakhomov	VA MA TX NV
	Understanding and controlling the Coupled Electrical, Chemical & Mechanical Excitable Networks of Living	University of Maryland Arizona State University John Hopkins University University of California, Davis	Wolfgang Losert	MD AZ MD CA
	System			

AFSOR	A 4D Nanoprinter for Making	Northwestern University Chad A. Mirkin	IL
	and Manipulating Macroscopic	University of Miami	FL
	Materials	University of California San Diego	CA
		University of Maryland	MD
MURI Topi	ic 11: Membrane-Based Electronics: F	oldable & Adaptable Integrated Circuits	
AFSOR	Atomically-Thin Systems That	Cornell University Jiwoong Park	NY
	Unfold, Interact and	Stanford University	CA
	Communicate at the Cellular	John Hopkins University	MD
	Scale		
	Foldable and Adaptive Two-	Massachusetts Institute of Technology Tomas Palacios	MA
	Dimensional Electronics	Harvard University	MA
		University of Southern California	CA
MURI Top	ic 12: Semantics and Structures for Hi	gher-level Quantum Programming Languages	
AFSOR	Semantics, Formal	Tulane University Michael Mislove	LA
	Reasoning, and Tool Support	Stanford University	CA
	for Quantum Programming	University of Pennsylvania	PA
MURI Topi	c 13: Strong Field Laser Matter Intera	ctions at Mid-Infrared Wavelengths	
AFSOR	Fundamental Strong-Field	Ohio State University Louis DiMauro	OH
	Interactions with Ultrafast,	University of Central Florida	FL
	Mid-Infrared Laser	University of Texas, Austin	тх
		University of Arizona	AZ
		Louisiana State University	LA
		Imperial College (1)	UK
	Harnessing Strong-Field Mid-	University of Colorado, Boulder Margaret Murnane	CO
	Infrared (IR) Lasers: Designer	University of Michigan	MI
	Beams of Relativistic Particles	University of Arizona	AZ
	and THz-to-X-ray Light	University of Maryland	MD
		Columbia University	NY

MURI Topic 14	: Visual Commonsense for Scene L	Jnderstanding		
ONR	Understanding Scenes and	University of California, Los Angeles	Song-Chun Zhu	CA
	Events through Joint Parsing,	Stanford University	-	CA
	Cognitive Reasoning and	Carnegie Mellon University		MI
	Lifelong Learning	University of Illinois		IL
		Massachusetts Institute of Technology		MA
		Yale University University of		СТ
		Oxford (1) University of		UK
		Glasgow (1) University of		UK
		Birmingham (1) University of		UK
		Reading (1)		UK
MURI Topic 15	: Characterization and Prediction	of Remotely Sensed Mesoscale Aerosols in Coastal and Maritime	Atmospheric Bounda	ry Layers
	for Electro-optical Propagation			
ONR	Advancing Littoral Zone	Colorado State University	Steven Miller	со
	Aerosol Prediction via	University of North Dakota		ND
	Holistic Studies in Regime-	University of Wisconsin-Madison		WI
	Dependent Flows	University of Nebraska-Lincoln		NE
MURI Topic 1	6: Role of the Host Microbiome o	n Behavior/Resilience in Response to Stressors		
ONR	The microbiome and	University of Colorado, Boulder	Kenneth Wright	CO
	responsiveness to stress:	University of California, San Diego		CA
	Countermeasure strategies for	Northwestern University		IL
	improving resilience to sleep			
	and circadian disruption			
MURI Topic 17	: Metalloid Cluster Networks			
ONR	Metalloid Cluster Building	John Hopkins University	Kit Bowen	MD
	Blocks and Their Inclusion with	University of Utah		UT
	Composite	University of Maryland		MD
		Naval Postgraduate school		CA
		University of California, Berkeley		CA

MURI Topic 1	8: Computational and Experiment	al Methods Towards Understanding the Properties of Mate	rials Above 2000°C	
ONR	The Science of Entropy	North Carolina State University	Donald Brenner	NC
	Stabilized Ultra-High	Duke University		NC
	Temperature Materials	University of California, San Diego		CA
		University of Virginia		VA
MURI Topic 19	9: Quantum Optomechanics			
ONR	Quantum Opto-Mechanics	Harvard University	Marko Loncar	MA
	with Atoms and	California Institute of Technology		CA
	Nanostructured Diamond	Massachusetts Institute of Technology		MA
		Yale University		СТ
		Stanford University		CA