Scientists make new high-tech liquid materials that can manipulate microorganisms
Science Daily, 09FEB2017

Currents make a liquid behave like materials with regular structures such as crystals. An international team of researchers (Australia, USA - Seattle University) has shown that such structures can be realized at the macroscopic scale on a liquid surface by using rotating waves. By changing waves, they can change the flow patterns which allows them to control the nature of the material remotely. If you use conducting liquids, you can create an interface with designed electrical properties. With biocompatible substances, you can guide micro-organisms or trap them.

Open Access

Tags: Advanced manufacturing, Advanced materials

Researchers grow a versatile 2-dimensional material
Nanowerk, 08FEB2017

Unlike other two-dimensional materials, scientists believe tungsten ditelluride has topological electronic states. Researchers at the University of Pennsylvania were able to produce a single, three-atom-thick layer of two-dimensional tungsten ditelluride and measure its properties. They studied the time dependent degradation under ambient conditions, and identified reaction with oxygen as the degradation mechanism. They found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling. The ability of this material to have multiple properties could also have implications in quantum computing.

Tags: Advanced materials, Featured Article

Most stretchable elastomer for 3-D printing
Science Daily, 09FEB2017

An international team of researchers (Israel, Singapore) has developed a family of highly stretchable and UV curable (SUV) elastomers that can be stretched by up to 1100%, and are suitable for UV curing based 3-D printing techniques. Using high resolution 3-D printing with the SUV elastomer compositions enables the direct creation of complex 3-D lattices or hollow structures that exhibit extremely large deformation. The SUV elastomers not only sustain large elastic deformation, but also maintain good mechanical repeatability, which makes them good materials for fabricating flexible electronics.

Tags: Advanced manufacturing, Advanced materials

Optical fibre with Einstein effect
Physorg.com, 14FEB2017

Researchers in Germany have fabricated photonic crystal fibre in a twisted form which causes the hollow channels to wind around the length of the fibre in helical lines. When they transmitted laser light through the fibre, the light was concentrated in the central region, where the core of a conventional optical fibre is located, instead of being distributed evenly as in regular fiber. Although their work is basic research, in the future the technique may have applications in sensors.

Tags: Advanced materials

Metamaterial: Mail armor inspires physicists
Physorg.com, 09FEB2017

Apart from measuring magnetic fields, the Hall effect can also be used to characterize metals and semiconductors and determine charge carrier density of the material. Researchers in Germany show that it is possible to produce meta-materials with a positive coefficient, even though their components have negative coefficients. The charge carriers in the metamaterial remain negatively charged.

continued...
charged electrons, Hall measurements only make them appear positively charged, as the structure forces them to take detours. The next step will be the production of anisotropic structures with a Hall voltage in the direction of the magnetic field. Such unconventional materials might be applied in novel sensors for the direct measurement of magnetic field eddies.

Tags: Advanced materials, S&T Germany

Nanorods Emit and Detect Light, Could Lead to Displays That Communicate via Li-Fi

IEEE Spectrum, 09FEB2017

Dual-functioning displays, which can simultaneously transmit and receive information and energy through visible light would enable enhanced user interfaces and device-to-device interactivity. An international team of researchers (USA - University of Illinois Urbana-Champaign, industry partner, South Korea) demonstrated that double heterojunctions designed into colloidal semiconductor nanorods allow both efficient photocurrent generation through a photovoltaic response and electroluminescence within a single device. They have applications from touchless interactive screens to energy harvesting and scavenging displays and massively parallel display-to-display data communication. TECHNICAL ARTICLE

Tags: Advanced materials, Communications technology

Germanium tin laser could increase processing speed of computer chips

Science Daily, 07FEB2017

Germanium tin holds great promise as a semiconducting material for future optical integration of computer chips, because it harnesses efficient emission of light, which silicon cannot do. A team of researchers in the US (University of Arkansas, University of Minnesota, Dartmouth College, Boston College, industry partner) fabricated an optically pumped laser made of the alloy germanium tin grown on silicon substrates. They reduced the laser threshold 80 percent at a lasing operation temperature up to 110 Kelvin which is significant progress compared with the previously reported best result. The augmented material could lead to the development of fully integrated silicon photonics, including both circuits and lasers, and thus faster micro-processing speed at much lower cost. TECHNICAL ARTICLE

Tags: Advanced materials, Microelectronics

‘Wet’ metallic MoS2 makes ultrafast supercapacitor

Nanotechweb, 06FEB2017

A team of researchers in the US (Northeastern University, University Arkansas) prepared M-MoS2 with a monolayer of water molecules covering both sides of the material nanosheet using a hydrothermal technique and found that the system reaches a high capacitance of 380 F/g at a scan rate of 5 mV/s. The nanochannels are around 1.18 nm wide and help increase the amount of space through which ions can diffuse and enlarge the surface area over which ions can be adsorbed. TECHNICAL ARTICLE

Tags: Advanced materials, Materials science

BIOTECHNOLOGY

Bacteria fed synthetic iron-containing molecules turn into electrical generators

Science Daily, 09FEB2017

In the wild, “electrogenic” bacteria generate current as part of their metabolism. Researchers at UC Santa Barbara built a molecule called DFSO+, which contains an iron atom at its core and added it to the bacteria. Within a few minutes, the synthetic molecule found its way into the bacteria’s cell membranes and began conducting current through its iron core. Their concept was to give the bacteria an electrode, so it can produce electricity while cleaning the water. The amount of electricity they produce will never power anything very big, but it can offset the cost of cleaning water. Changing bacteria’s capabilities will most likely be cheaper than bacteria genetically engineered to do the same job.

Open Access TECHNICAL ARTICLE

Tags: Biotechnology

Removing the Viral Threat: Two Months to Stop Pandemic X from Taking Hold

DARPA News, 06FEB2017

Over the past several years, DARPA-funded researchers have pioneered RNA vaccine technology, a medical counter-measure against infectious diseases that uses coded genetic constructs to stimulate production of viral proteins in the body, which in turn can trigger a protective antibody response. DARPA is now launching the Pandemic Prevention Platform (P³) program, aimed at developing that foundational work into an entire system capable of halting the spread of any viral disease outbreak before it can escalate to pandemic status.

Tags: Biotechnology, DARPA

CYBER SECURITY

Protecting bulk power systems from hackers

Physorg.com, 10FEB2017

In this survey paper, researchers at the Michigan Technological University present a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation framework with emphasis on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Their expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. They discuss open issues for metrics and future design related to the impact quantification of cyber-related contingencies.

Tags: Cyber security

continued...
Self-Destructing Gadgets Made Not So Mission Impossible

IEEE Spectrum, 09FEB2017

The self-destruct mechanism proposed by researchers in Saudi Arabia can work swiftly and is compatible with the common semiconductor technology. It relies on an expandable polymer layer that can rapidly expand to around seven times its original volume when heated to temperatures above 80 degrees C. The heat that triggers the polymer expansion comes from heater electrodes that could draw power from the battery of a smartphone or laptop. Roughly 500 to 600 milliwatts supplied to the heater electrodes enables the polymer to expand and crumple the chip within 10 to 15 seconds. Details of the research will be reported in an upcoming issue of the journal Advanced Materials Technologies.

Tags: Cyber security

ENERGY

Battery can be recharged with carbon dioxide

Physorg.com, 09FEB2017

Researchers at Pennsylvania State University have developed a rechargeable battery called flow cell, creating pH-gradient between two liquids one with dissolved CO₂ gas and the other ambient air. The two solutions are injected into two channels in a flow cell. The pH gradient in the cell creates a voltage difference between the two electrodes causing electrons to flow along a wire connecting the electrodes. After the flow cell is discharged, it can be recharged again by switching the channels that the solutions flow through. Open Access

Tags: Energy, Battery

New, long-lasting flow battery could run for more than a decade with minimum upkeep

Science Daily, 09FEB2017

Molecules of viologen previously used in flow batteries were degrading quickly in neutral solutions. Researchers at Harvard University identified the problem and modified its molecular structure to make it more resilient. By functionalizing ferrocene molecules in the same way as the viologen, the team was able to engineer a battery that loses only one percent of its capacity per 1000 cycles. The neutral pH should be especially helpful in lowering the cost of the ion-selective membrane that separates the two sides of the battery. TECHNICAL ARTICLE

Tags: Energy, Battery

Two-dimensional oxides juice up sodium ion batteries

Nanowerk, 09FEB2017

Sodium ion batteries are a promising alternative to lithium ion batteries, but it exhibits large volume change during the sodiation and lithiation process which makes it unsuitable as a high-performing anode material. Researchers in Saudi Arabia developed a chemical process to control the degree of exfoliation by carefully choosing the reactants, solvents, and reaction conditions. They can precisely control the number of atomic layers in SnO anode sheets. They have demonstrated that, when the number of SnO atomic layers in one SnO nanosheet is less than about five, the sodium ion batteries can last for thousands of cycles. TECHNICAL ARTICLE

Tags: Energy, Battery

Atomtronic battery made from Bose-Einstein condensate

Physics World, 07FEB2017

A team of researchers in the US (NIST, University of Colorado) has created an atomtronic battery based on Bose-Einstein condensate. Unlike conventional batteries, which are driven by an electrical potential, the atomtronic battery is driven by a chemical potential which is related to the abundance of atoms. As the atoms repel each other they cause a current of atoms. Potential applications of the battery include inertial sensing and quantum-information processing. Open Access

Tags: Energy, Battery

Water evaporation generates electrical energy

Physics World, 07FEB2017

Researchers in China constructed an electric power supply driven by water evaporating from a carbon nano-material. Their device is about 2.5 cm long and can create a voltage of about 1.5 V on par with a standard AA battery. An infrared spectroscopy study of the device suggests that electrical energy is created via a streaming potential. While the power supply only delivers a few hundred nanoamps, the team connected several devices together to run a liquid-crystal display. With further improvements, the researchers say, the device could be used to run sterilization equipment and to purify or desalinate water in warm regions of the world. Open Access

Tags: Energy, S&T China

continued...
for extremely wideband longitudinal optical generation
and the entire receiver architecture following the antenna.
The central premise is that the incident THz signal excites
a spectrum-dependent current distribution on the antenna
surface and they present a method to measure and then
estimate the incident spectrum from the impressed current
distribution on an on-chip antenna. They present a synthe-
sizer-free THz spectroscope that consists of an integrated
scatterer and a multitude of low-power sensors capable
of subwavelength measurement of near-field interactions
which are exploited for spectral estimation. The research
advances medical imaging, communications and drug de-
velopment.

Tags: Technical Article, Terahertz technology

INFORMATION TECHNOLOGY

AI Software Writes, and Rewrites, Its Own Code

MIT Technology Review, 14FEB2017

Training deep-learning algorithms requires large amounts
of data. It would be lot more efficient if an algorithm could
develop an idea about what it is looking for with less data. A
company in the US has developed a system that uses proba-
bilistic programming, rather than specific variables, to build
a predictive model that explains a particular data set. As
further examples are provided, the code behind the model is
rewritten, and the probabilities tweaked.

Tags: Information technology, Artificial intelligence

New study of ferroelectrics offers roadmap to
multivalued logic for neuromorphic computing

Physorg.com, 10FEB2017

An international team of researchers (France, USA - Argonne
National Laboratory) lays out a recipe by which we could tap
the properties of very thin films of perovskites. According
to the calculations, perovskite films could hold two, three,
or even four polarization positions that are energetically
stable. The team calculated these stable configurations and
how to manipulate the polarization to move it between
stable positions using electric fields. They are working with
experimentalists to apply the principles to create a working
system. When realized in a device, it offers a significant step
towards neuromorphic computing.

Tags: Information technology

Secure wireless chargers

MIT News, 09FEB2017

Counterfeit chargers for portable electronics are a major
problem. Researchers at MIT have built a chip that blocks
attempts to wirelessly charge a device’s battery unless the
charger first provides cryptographic authentication. The
chip uses elliptic curve cryptography for authentication,
which is a “public-key”. The chip doesn't need to store a
secret key of its own. They found a way to simplify the
encryption circuit so that it takes up less space on the chip

continued...
and consumes less power. They presented their work at the recent International Solid-State Circuits Conference.

Human intuition added to planning algorithms

Science Daily, 07FEB2017

Researchers at MIT are trying to encode the strategies of high-performing human planners in a machine-readable form to improve the performance of planning algorithms by 10 to 15 percent on a challenging set of problems. They discovered that linear temporal logic could be used to add constraints to the problem specifications. They are using natural-language-processing techniques to make the system fully automatic, so that it will convert users' free-form descriptions of their high-level strategies into linear temporal logic without human intervention. Researchers will report their research at an upcoming conference.

MATERIALS SCIENCE

Theoretical physicists deliberately misled intelligent machines

Science Daily, 13FEB2017

Researchers in Switzerland propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. They demonstrated the success of this method on the many-body-localization transition in a disordered quantum spin chain. Their method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It paves the way to the development of a generic tool for identifying unexplored phase transitions. TECHNICAL ARTICLE

Novel quantum state in strange insulating materials

Science Daily, 09FEB2017

Despite the promise of Mott insulators, scientists still don’t fully understand how they work. A team of researchers in the US (Brown University, National High Magnetic Field Laboratory, Stanford University, SLAC National Accelerator Laboratory) focused on a strange type of magnetism that arises with Mott insulators with strong spin-orbit coupling. They showed that as the material is cooled below a critical temperature, changes in the distribution of electron charges cause distortion in the material’s atomic orbitals and lattice. As the temperature cools further, that distortion drives the magnetism by causing an alignment of electron spins within individual layers of the atomic lattice. The work is an important step toward understanding and manipulating the properties of Mott insulators for real-world applications. OPEN ACCESS TECHNICAL ARTICLE

QUANTUM SCIENCE

Taming complexity

Science Daily, 10FEB2017

An international team of researchers (Switzerland, USA - Microsoft Research) has found a way to overcome the mathematical complexity of many particles quantum systems by using an artificial neural network. They used reinforcement learning to train it to recognize which parameters are most important in the chaotic system of equations and which could be ignored, so that even larger systems can be calculated with simplified equations. Their approach enables the description of quantum systems with more than 100 particles, with a reasonable computational effort. In the next phase, the researchers hope to examine the limits of this approach more closely. TECHNICAL ARTICLE

S&T POLICY

China on track to expand its navy to 500 warships

Next Big Future, 09FEB2017

The UK Royal United Services Institute expects China to reach a 500 ship navy. The 500 warships will include aircraft carriers, nuclear submarines, amphibious ships and a burgeoning frigate and destroyer force. Just in the past three weeks a new destroyer and new corvette have been launched and discussion over new carrier-based aircraft has been increasing. China’s official defense spending is expected to be $233 billion in 2020, up from $123 billion in 2010, according to a new report by IHS Jane’s.

continued...
SCIENCE WITHOUT BORDERS

Experts investigate how order emerges from chaos

Physorg.com, 13FEB2017
Researchers in Russia have developed an analytical scheme explaining the results of numerical and laboratory experiments where coherent vortices (stable vortex formations) are observed by relating vortex characteristics to the statistical properties of chaotic fluctuations. Uncovering this link could be useful in identifying the causes of the particular characteristics of such atmospheric phenomena as cyclones and anticyclones. The results of the analysis are valuable for their predictive power. TECHNICAL ARTICLE
Tags: Science without borders, S&T Russia

University incubators may lead to lower-quality innovation, new study shows

Science Daily, 10FEB2017
In their study, an international team of researchers (UK, USA - Baylor College) found some empirical support to the hypothesis that universities often create incubators under the pressures of reduced public funding for academia and increased pressure for public accountability. The incubators are competing against other academic innovation activities for integral resources—personnel, money, lab space, etc. The net result of that competition may be a dilution of innovation. They focused less on other things that universities can do that are related to innovation and entrepreneurship. TECHNICAL ARTICLE
Tags: Science without borders

SENSORS

The Curious Case of Cockroach Magnetization

MIT Technology Review, 09FEB2017
American cockroaches become magnetized when placed in a magnetic field. An international team of researchers (Singapore, China, Australia, Poland) found that the magnetic properties of living cockroaches are strikingly different from those of dead cockroaches. They assume that magnetization is the result of magnetic particles inside the cockroaches aligning themselves with the external magnetic field. A better understanding of biomagnetic sensing could help engineers design better sensors for other applications, such as microrobot navigation. OPEN ACCESS TECHNICAL ARTICLE
Tags: Sensors, Biomimetics

About This Publication
The appearance of external hyperlinks in this publication does not constitute endorsement by the United States Department of Defense (DoD) of the linked web sites, nor the information, products or services contained therein. In addition, the content featured does not necessarily reflect DoD's views or priorities.

To SUBSCRIBE or UNSUBSCRIBE, visit https://tin-lysainc.com/ASDRE/Subscription. To provide feedback or ask questions, contact us at asdre-st-bulletin-reply@sainc.com. This publication is authored and distributed by:

Ryan Zelnio, Ph.D., Associate Director - Tech Watch / Horizon Scans, Office of Net Technical Assessments, OSD AT&L/OASD(R&E)
Ms. Hema Viswanath, TW/HS, ONTA Corporate Librarian